Micronutrient supplements for children after deworming

Andrew Hall

The availability of a few inexpensive, single-dose drugs to treat soil-transmitted helminths and schistosomiasis offers the potential to reduce a considerable burden of acute disease, especially among children in sub-Saharan Africa. These treatments are being promoted as “rapid impact interventions”. However, if helminth infections cause underweight, stunting, anaemia, and impaired mental development in children, how will removing worms alone lead to recovery without treating the underlying deficits that have been caused or made worse by helminth disease? Energy, protein, and micronutrients are required by children who are underweight or who have stunted growth; children who are anaemic will require iron and other micronutrients for haemopoiesis; and children who have lost education will need remedial teaching. Treating neglected worm diseases is an essential first step to good health, but anthelmintic drugs need to be integrated with simple and inexpensive nutritional interventions such as micronutrient supplements to promote recovery and have a rapid effect.

Introduction

The availability of a few inexpensive, single-dose drugs to treat several very common but neglected parasitic infections has created a flush of optimism that a large burden of ill-health and disability in Africa could be greatly reduced. The benzimidazole derivatives albendazole and mebendazole are effective to different degrees against the three main species of soil-transmitted helminths listed in the table, while the three main species of blood fluke that cause schistosomiasis can be treated with praziquantel (table). All three drugs can be administered as a single-dose treatment, either as a fixed amount in the case of albendazole or mebendazole, or as a single dose adjusted according to bodyweight in the case of praziquantel. To simplify matters further it has been shown possible to estimate the dose of praziquantel, or to concentrate properly, without remedial teaching. There is no doubt that periodic treatments to people who require them, mostly children in sub-Saharan Africa, and thereby make a contribution to the Millennium Development Goals.

Several articles promoting the control of neglected parasitic diseases have referred to evidence of the effects of treatment on anaemia, child growth, and mental development, and have used this to support the case for intensifying efforts to deliver anthelmintic drugs. Some of these articles have called such treatments “rapid impact interventions”. There is no doubt that periodic treatment with effective anthelmintic drugs will greatly reduce parasite loads, alleviate acute disease, and help to reduce transmission. But the assumption that simply treating soil-transmitted helminths and schistosome infections will lead automatically and rapidly to better health, nutritional status, and educational development is flawed and could create overly optimistic expectations.

If soil-transmitted helminths and schistosomes cause anaemia, how will the haemoglobin concentration increase after the worms have been killed without enough iron and other micronutrients in the diet? If moderate or heavy infections with helminths cause a loss of appetite, malabsorption, and malnutrition, depending on the species, so that children become underweight or stunted, how will they achieve catch-up growth after treatment without enough energy, protein, and micronutrients? And if worms have impaired children’s education, how will they make up for the lessons that they have missed because they were absent from school or unable to concentrate properly, without remedial teaching? These are not just rhetorical questions for the sake of argument; they identify concurrent deficits that need to be treated at the same time as anthelmintic drugs are given to children.

The effects of worms on nutritional status

All three major species of schistosomes that infect human beings, both species of hookworms, and the whipworm (table), contribute to blood loss, but in different ways. The passage of the eggs of Schistosoma mansoni and Schistosoma japonicum through the gut wall causes blood loss that can, in moderate to heavy infections, be reported as dysentery, although there is the possibility that some of the iron in haemoglobin might be reabsorbed in the lower intestine. This is not the case for Schistosoma haematobium: the iron in

<table>
<thead>
<tr>
<th>Common name At risk</th>
<th>Infected</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-transmitted helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>Large roundworm</td>
<td>4211</td>
</tr>
<tr>
<td>Trichuris trichiura</td>
<td>Whipworm</td>
<td>3212</td>
</tr>
<tr>
<td>Necator americanus and Ancylostoma duodenale</td>
<td>Hookworm</td>
<td>3195</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistosoma mansoni</td>
<td>Blood fluke</td>
<td>393</td>
</tr>
<tr>
<td>Schistosoma haematobium</td>
<td>Blood fluke</td>
<td>436</td>
</tr>
<tr>
<td>Schistosoma japonicum</td>
<td>Blood fluke</td>
<td>45</td>
</tr>
</tbody>
</table>

Table: The prevalence of some major neglected parasitic infections, the millions estimated to be at risk and infected, and the main single-dose treatments available.
haemoglobin that passes into the bladder is lost in the urine (figure 1), and a milligram or more of iron a day can be lost in this way every day. The amount of iron lost by children infected with *S haematobium* can be much the same as daily menstrual losses of iron averaged out over a month. The feeding of hookworms and the anticoagulant they produce causes blood loss into the small intestine, some of which may be reabsorbed proximally. Finally, moderate to heavy infections with *Trichuris trichiura* cause inflammation of the lower bowel, blood loss, and dysentery.

For all these worms, the key nutrient lost is iron. This micronutrient is particularly hard to obtain in the diet and, once consumed, is difficult to absorb. Meat is a better source of iron than plant foods: around 20–30% of the iron already incorporated into haem molecules is absorbed, compared with less than 10% of the iron present in vegetable foods because it is irreversibly bound to phytates and tannins. However, meat is a relatively expensive food for poor people, if it is eaten at all, and most dietary iron comes from plant foods. Although malaria, the hookworms, and schistosomiasis all contribute to anaemia in people in sub-Saharan Africa, the dietary availability of iron is the major determinant of anaemia in countries such as Tanzania. Even if there is internal bleeding because of worms, lost haemoglobin can be replaced up to a point if the intake of iron and other nutrients are adequate. But not all anaemia is caused by an iron deficiency: a lack of micronutrients such as folate, vitamin B12, and vitamin A can also contribute to a low haemoglobin concentration.

The role of both iron and vitamin A in anaemia were shown clearly in a placebo controlled, randomised trial in Tanzania in which supplements were given to children after deworming. Schoolchildren living in coastal Tanzania were treated for soil-transmitted helminths and schistosomiasis and then randomly assigned to one of four groups to receive on 3 days a week one of the following treatments: 5000 IU of vitamin A and 200 mg of ferrous sulphate, 5000 IU of vitamin A alone plus an iron placebo, 200 mg of ferrous sulphate plus a vitamin A placebo, or both placebos. After 12 weeks of treatment the haemoglobin concentration of children given both placebos, which is equivalent to being dewormed alone, increased from the baseline measurement, but only by 3.6 g/L (95% CI 1.2–6.1); the group given vitamin A alone increased by 13.5 g/L (11.0–16.0); the group given iron alone increased by 17.5 g/L (15.0–20.0); and the group given both vitamin A and iron increased by 22.1 g/L (19.6–24.6). All increases were significant compared with baseline measurements (p<0.001) but the gain in haemoglobin concentration in the group given both micronutrients represented a 21% increase in only 3 months compared with about a 4% increase in the placebo group over the same period. The children given both vitamin A and iron also gained 0.9 kg in weight (0.7–1.0) compared with only 0.2 kg (0.1–0.4) by those in the placebo group (p<0.001); they also gained significantly more height in only 12 weeks (p<0.001). These data indicate that treating worm infections and micronutrient deficiencies together can lead rapidly to improved growth—both ponderal and linear—as well as to an improved haemoglobin concentration.

Several studies have shown substantial extra weight gain or linear growth in children who have been treated for worm infections alone but other studies have not, which has created some confusion. Some of this inconsistency could be because soil-transmitted helminths and schistosomes tend to be unevenly distributed between hosts (figure 2) so that 80% of all worms may be found in 40% of people or fewer. This clumped or aggregated distribution means that the beneficial effects of deworming might be felt by only a few children in the short term, and the effect on the group average will be diluted. But since two-thirds or more children can become moderately or heavily infected at least once during a programme of periodic treatment and reinfection, the effects of deworming can take some time to become apparent in any population of children. Even if studies of the effect of deworming have adequate controls, a sufficient sample size, repeated periodic treatment, and long enough follow-up, the mixed or inconclusive results noted in a recent review of deworming trials could be a result of the expectation that anthelmintic treatment alone will be sufficient. If treating worms increases appetite, as some studies have shown, then there can be increased growth only if there is enough protein and energy to fuel that growth, and if there are no concurrent deficiencies of micronutrients. Supplements of multiple micronutrients alone could be sufficient to achieve improvements in the growth of young children in developing countries, so the quality of the diet is just as important as the quantity.

As well as removing a constraint on normal rates of growth by deworming, can treating worms stimulate a
greater than normal increase to achieve catch-up growth?
There is good evidence of the potential for catch-up growth
by malnourished children but is difficult to assess
whether such growth has been achieved without knowing
what the potential for growth is in the first place, and
without having untreated controls. Untreated controls are
not easy to achieve, especially in the case of severe
helminth disease—eg, trichuris dysentery syndrome.
Nonetheless, children with this syndrome have been
shown to experience rates of linear growth of nearly 11 cm
per year after treatment, which is more than two SD above
the gain expected by British children of the same age.

The effect of worms on children’s mental
development
There is considerable interest in whether helminth
infections can impair the mental development and
educational achievements of children. Some
consequences could be caused by absenteeism from
school because of illness or to effects on concentration,
but others could be mediated through nutrition and the
role that micronutrients such as iodine and iron have on
the development of the brain and its functioning. If
helminths impair mental function and learning, then
perhaps treatment could lead to better cognitive and
educational outcomes.

The main problem is that studies cited as evidence for
the effects of helminth infections or malnutrition on
cognitive function, educational achievement, or attendance
are based on associations observed in cross-sectional data,
which are open to confounding. The cognitive or
educational deficits being measured in such studies are
very likely to reflect the poverty and deprivation of children
that occurs concurrently with chronic helminth infections
and malnutrition, and cannot be considered as causative.

There have been a few trials of the effect of deworming
on tests of cognitive function or educational
achievement, but the results have not been consistent.
Again, this could because of the assumption that the
effect of worms is reversible by treatment alone. But if
children have missed lessons or have been unable to
concentrate properly at school because of their worm
infections, recovery will probably require remedial
education in the same way that stunted children need
remedial food and anaemic children need remedial
micronutrients. Ideally, if children in developing countries
are to make best use of their opportunity for education
they will need to be healthy from the start of schooling.

Conclusions
The idea that providing treatments for neglected parasitic
infections such as soil-transmitted helminths and
schistosomiasis are rapid impact interventions might
not be true for nutritional status, growth, and educational
achievements unless any deficits caused by these infections
are treated at the same time, ideally in an integrated
programme to keep delivery costs as low as possible. If
they are not, the effect of deworming on growth and
micronutrient status could take so long to achieve that
the benefit of treatment might not be readily apparent, and
this could affect support for programmes from
governments and communities alike. The role of
community-directed treatment with ivermectin in the
African Programme for Onchocerciasis Control has been
important to sustain the programme because it is based
partly on support from villagers who appreciate the relief
from treating onchodermatitis. Having quick and evident
effects could be crucial to sustaining deworming
programmes.

How can remedial treatments for these deficits be
delivered after deworming? First the rapid impact
package needs to provide remedial micronutrient
supplements after treatment. Large therapeutic doses of
vitamin A are inexpensive and easy to give, and
anthelmintics are now being given at the same time as
vitamin A to young children in many countries in Africa
and Asia. However, neither anthelmintic drugs nor
vitamin A should be taken by women in the first trimester
of pregnancy because of potential teratogenicity, which
raises concern for treating adolescent girls. A study of
9000 school children in grades 4 to 6 in Tanzania found
that 20% of girls reported having had sexual intercourse,
but only 39% of 114 girls with biological markers of sexual
activity (eg, an infection) acknowledged having had such
activity, indicating great under-reporting. In an analysis
of official education statistics, pregnancy was reported to
be a cause of school dropout for six or seven girls per
1000 in grades 6 and 7 respectively, also in Tanzania.
These data should provide a warning to programmes that
give mass treatment with anthelmintic drugs to school-
age children as well as for those considering adding
mega-dose supplements of vitamin A. The alternative,
for vitamin A at least, is to give small daily doses.
By sharp contrast with vitamin A, iron is poorly absorbed and large or quickly repeated doses have side-effects, so it has to be trickled into the body. To do this it will be necessary to give a course of iron supplements immediately after treatment, which provides an opportunity to give safe amounts of vitamin A and other micronutrients such as zinc, folate, and iodine. The cost of the multiple micronutrient tablet developed by UNICEF for recent trials is currently about US$0.01, which could be reduced by large-scale purchases. Providing micronutrient supplements was ranked by the Copenhagen Consensus as the second highest of 17 potential development interventions, mainly because of the high benefit to cost ratios that ranged from 4–43 for giving vitamin A to young children and from 176–200 for giving iron per head. Multiple micronutrient supplements can bring their own benefits but have an even greater potential to improve health when given after anthelmintic treatments.

Achieving good compliance in taking a course of micronutrient supplements will be less easy than for a single-dose treatment, but cluster randomised trials in Mali and the Philippines have shown that school teachers can give weekly iron supplements for 12 weeks. Keeping the iron load as low as possible might be important in the light of the risk of exacerbating infectious diseases indicated by a recently halted study in Zanzibar. But in Zanzibar the iron was given daily to infants and very young children, so twice weekly supplements might be better tolerated by older children and have less effect on malaria, which is perhaps the main concern. Nevertheless, the issue needs to be monitored during programmes in the same way that it is good practice to monitor the development of anthelmintic resistance.

The need for remedial energy and protein is much harder to deal with because school feeding programmes can be very expensive by comparison with the cost of drug treatments. The World Food Programme estimate that it costs an average of $34 a year to feed a child, or about $0.19 per child a day. This is expensive compared with costs of less than $1 a year for delivering albendazole and praziquantel to schoolchildren in Ghana and Tanzania (figure 3). But there are models other than a centrally organised programme in which food is imported and transported to schools to be cooked and given to children. For example, cash can be used to purchase food locally to prepare snacks at schools, an initiative in Indonesia that has also helped to support local farmers and community groups who prepare and sell food for schoolchildren. In a small way perhaps, such programmes are an approach to addressing both ill-health and poverty in an integrated manner. However, the relatively high costs of giving supplementary food, the lack of evidence of an effect on children’s growth, and the possibility of substitution for food given at home will always be issues, so school feeding is unlikely to be feasible after deworming.

Remedial education might not be so hard to provide, given that children who benefit from anthelmintic treatments provided in school are enrolled in education. Nevertheless, if schools are to be conduit for anthelmintic treatments and micronutrient supplements, teachers need to be aware that they might need to provide remedial education to children after they have been treated and are recovering their health.

The final conclusion is not just that vertical disease control programmes and vertical nutrition programmes need to be integrated but, better still, that they should be reoriented to become horizontal. The aim should be to meet the needs of school-age children, a neglected age-group that harbours a large burden of disease as a result of undernutrition and neglected infections. To provide micronutrient supplements after deworming would be a good start, and such a programme offers the potential to contribute not only to Millennium Development Goals that combat major diseases and alleviate hunger, but also to the goal of ensuring that all children enrol in school and complete a basic education.

Figure 3: A schoolchild in Tanzania being given praziquantel as part of a mass treatment programme in schools
Conflicts of interest
I declare that I have no conflicts of interest.

References

